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Abstract
Given a graph  and a set , the -interval of , , is the set formed by the vertices
of  and every  forming a triangle with two vertices of . If , then  is -
convex of ; if , then  is a -interval set of . The -interval number of  is the
minimum cardinality of a -interval set and the -convexity number of  is the maximum
cardinality of a proper -convex subset of . In this work, we show that the problem of
computing the -convexity number is W[1]-hard and NP-hard to approximate within a factor

 for any constant  even for graphs with diameter 2 and that the problem of

computing the -interval number is NP-complete for general graphs. For the positive side, we
present characterizations that lead to polynomial-time algorithms for computing the -
convexity number of chordal graphs and for computing the -interval number of block
graphs. We also present results on the -hull, -interval and -convexity numbers
concerning the three standard graph products, namely, the Cartesian, the strong and the
lexicographic products, in function of these and well-studied parameters of the operands.
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Abstract

A I-fold of G is the graph G/ obtained from a graph G by iden-
tifying two nonadjacent vertices in G having at least one common
neighbor and reducing the resulting multiple edges to simple edges. A

uniform k-folding of a graph G is a sequence of graphs
G = Go, Gl,G2,..., k, where Gi+l is a I-fold of Gi for

k — I such that all graphs in the sequence ate singular

or all of them are nonsingular. The lamest k for which there exists a
uniform k- folding of G is called fold thickness of G and this concept
was first introduced in [1]. In this paper, we determine fold thickness

of corona product graph G@RZn, G Km and graph join G +

Key Words: Fold thickness, Uniform folding, Singular graphs.
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DECOMPOSITION DIMENSION OF SOME CLASS OF TREES

REJI T AND RUBY R

ABSTRACT. For an ordered k-decomposition 9 = {Gl, G2, , Gk) of a connected graph
G = (V, E), the 9-representation of an edge e is the k-tuple

'(e/ 9) = (d(e, Gl), d(e, G2)' • • • ' d(e, Gk)),

where d(e, Gi) represents the distance from e to Gi. A decomposition 9 is resolving if
every two distinct edges of G have distinct representations. The minimum k for which
G has a resolving k-decomposition is its decomposition dimension dec(G). In this paper,
the decomposition dimension of broom graph, double broom graph and upper bounds for
the decomposition dimension of banana tree graph and fire cracker graph are determined.

1. INTRODUCTION

Let G = (V, E) be a finite undirected connected graph without loops or multiple edges.

A decomposition of a graph G is•a collection of subgraphs of G, none of which have isolated

vertices, whose edge sets provide a partition of E(G). A decomposition of G into k subgraphs

is a k-decomposition of G. A decomposition 9 = {Gl, G2, ... , Gk} is ordered if the ordering

(Gl, G2, ... , Gk) has been imposed on 9. If each subgraph Gi of 9 is isomorphic to a graph

H, then 9 is said to be an H-decomposition of G.

For edges e, f G E(G), the distance d(e, f) between e and f is the minimum non

negative integer k for which there exists a sequence e , ek = f of edges of

G such that ei and ei+l are adjacent for i —0,1,..., k — 1. For an edge e of G and a

subgraph F of G, d(e, F) = min{d(e, f), f e E(F)}. The following definitions are from [1].

Let 9 = {Gl, 62, , Gk} be an ordered k-decomposition of G. The 9-representation of an

edge e is the k-tuple I(e/9) = (d(e, Gl), d(e, , d(e, Gk)), where d(e,Gi) represents

the distance from e to Gi. We call 9 a resolving k-decomposition if for any pair of edges e

and f, there exists some index i such that d(e, Gi) # d(f, Gi). The minimum k for which G

has a resolving k-decomposition is its decomposition dimension dec(G).

2. PRELIMINARIES

G. Chartrand et al. introduced these concepts in [1]. It is further studied in [3—5, 8).

The concepts of resolving set and minimum resolving set have appeared in the literature

previously. Slater introduced and studied these ideas with a different termin010U 'locating

set' in [9) and [10]. I-larary and Melter [6] discovered these concepts indepen ently and these

Received: February 03, 2022. Revised: July 12, 2022.
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Least Common Multiple of Path, Star with Cartesian
Product of Some Graphs
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Abstract A graph G without isolated vertices is a least common multiple of two graphs 111 and

112 if G is a smallest graph, in terms of number of edges, such that-there exists a decomposition of

G into edge disjoint copies of HI and 112. The collection of all least common multiples of HI and

is denoted by LCM(HI, 112) and the size of a least common multiple of HI and 112 is denoted

by lcm(H1, H2). In this paper lcm(P4, Pm C] Pn), lcm(P4, Cm C] Cn) and Kl,m CJ Kl,n)

are determined.

Keywords graph decomposition; least common multiple

MR(2020) Subject Classification 05C38•, 05C51; 05C70

1. Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices.

The number of vertices of a graph G denoted by v(G), is called the order of G and the number

of edges of G denoted by e(G), is called the size of G.

A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic

to H, whose edge sets partition the edge set of G. Such a set of subgraphs is called an H-

decomposition of G. If G has an H-decomposition, we say that G is Il-decomposable and write

Hic.

A graph is called a common multiple of two graphs 111 and 112 if both HI IG and H2iG. A

graph G is a least common multiple of 111 and 112 if G is a common multiple of 111 and 112

and no other common multiple has fewer edges. Several authors have investigated the problem

of finding least common multiples of pairs of graphs HI and 112', that is graphs of minimum

size which are both 111 and 112 decomposable. The problem was introduced by Chartrand et

al. in [1) and they showed that every two nonempty graphs have a least common multiple. The

problem of finding the size of least common multiples of graphs has been studied for several

pairs of graphs: cycles and stars [1—3], paths and complete graphs [4), pairs of complete graphs,

complete graphs and a 4-cycle, paths and stars and pairs of cycles. Least common multiple of.

digraphs were considered in (5].

Received March 20, 2022; Accepted May 22, 2022
* Corresponding author
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Projective Dimension of Some Graphs

REJI THANKACHAN, RUBY ROSEMARY and SNEHA BALAKRISHNAN

ABSTRACT. In this paper exact values for the projective dimension of edge ideals associated to some star
related graphs and product graphs G O P2, when G = Cn, Kn and upper bounds for the projective dimension
when G = Pn, Wn, are obtained. We have proved that pd(Cn+1 0 1>2) = 2(n låJ pd(Kn o "2) = 2n—2
and pd(Pn+1 0 1>2) n + 3 + 1%-åJ, pd(W.n O P2) n + 1 + These values are functions of the
number of vertices in the corresponding graphs.

1. INTRODUCTION

In this paper all graphs are finite and simple. Let V (G) denote the vertex set of a graph
G and let (u, v) denote an edge of G with end points u and v. For v G V(G), let N (v) denote
the set of all vertices adjacent to v, called the neighbor set of G and N [v] = N(v) IJ {v}.
Let Sn denote the star on n + 1 vertices {uo, UI, ... , un} where uo is adjacent to all other
vertices. The wheel graph Wn on n + 1 vertices is a graph obtained by connecting all n
vertices of the cycle Cn to an n + I-th vertex (called the hub). The edges connecting the
hub and the vertices of Cn are called spokes.

The Cartesian product of two graphs G and H is denoted as G O H. It is a graph with
vertex set V (G) x V (11) = { (g, h)lg e G, h e H} and two vertices (g, h) and (g', h') are
adjacent if and only if g g' and hh' e E(H) or gg' e E(G) and h = h'.

Let G is a graph with vertex set V = {$1 , $2, ... , :rn} and let S = :c2, ... ,xnl be
the polynomial ring over the field K. The edge ideal of G is the monomial ideal I (G) C S
generated by {Titj : (Ci,cj) is an edge of G}. The edge ring of G is the quotient ring
S/I(G) [4]. Villarreal introduced the concept of edge ideal of a graph in [6].

Let U cn} be a finite set. A simplicial complex A over U is a subset of
the powerset U with the property that {VI}, {v2}, ... , {vn} belongs to A and if F e A
and J c F, then J e A. The elements of A are called faces and dimension of a face,
dim F IFI — 1. The dimension of the simplicial complex A, dim A is the maximum
of the dimensions of its faces [4]. Associated to the edge ideal I(G) of G is its indepen-
dence complex, ind(G), the simplicial complex on the vertex set V of G which has faces

, no {Ci, , is an edge of G} [3].
The Betti number of an ideal can be defined in terms of its Stanley — Reisner complex

using the Hochster's Formula.
Theorem 1.1. [3] Let A be the Stanley-Reisner complex of a squarefree monomial ideal I C S
and let , where m is a squarefree 1110110111ial of degree greater than or equal to i, be the
multigraded betti number of I. Then = dirnKIIdeg K), where Am is the
subcomplex of A consisting of those faces whose vertices correspond to variables occuring in m
and flk (A) is the associated homology group of A.

Received: 27.022022. In revised form: 26.092022. Accepted: 03.10.2022
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For an ordered k-decomposition 9 = {01, 02, , Gk} of a connected graph G
(V, E), the 9-representation of an edge e is the k-tuple py(e/9) = (d(e, Gl), d(e, G2), ... ,
d(e, 0k)), where d(e, Gi) represents the distance from e to Gi. A decomposition is
resolving if every two distinct edges of G have distinct representations. The minimum k
for which G has a resolving k-decomposition is its decomposition dimension dec(G). In
this paper, decomposition dimension of Cartesian product of paths, cycles and stars is
studied.

Keywords: Decomposition dimension; graph decomposition; Cartesian product.
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1. Introduction

Let G = (V, E) be a finite, undirected, simple, connected graph. A decomposition
of a graph G is a collection of subgraphs of G, none of which has isolated vertices,
whose edge sets provide a partition of E(G). A decomposition of G into k subgraphs
is a k-decomposition of G. A decomposition 9 = {Gl, G2, . , . , Gk.} is ordered if the
ordering (Gl, G2, ... , Gk.) has been imposed on 9. If each subgraph Gi of 9 is
isomorphic to a graph H, then 9 is said to be an Il-decomposition of G.

For edges e, f G E(G), the distance d(e, f) between e and f is the minimum
non-negative integer k for which there exists a sequence e —
f of edges of G such that ei and ei+l are adjacent for i = The
following definitions are from [5]. If d(g, e) d(g, f), then the edge g G E(G)

t Corresponding author.
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ON THE MEAN SQUARE AVERAGE OF DIRICHLET
L-FUNCTION OVER CHARACTERS OF ODD PARITY
IN A SPECIAL CASE

Neha Elizabeth Thomas, Arya Chandran, K. Vishnu Namboothiri

Abstract: Evaluating the mean square averages of the Dirichlet L-functions over Dirichlet char-
acters χ of the same parity is an active problem in number theory. Here we explicitly evaluate∑
χ odd L(3, χ) using certain trigonometric sums and Bernoulli polynomials and express the sum

in terms of the Euler totient function φ and the Jordan totient function Js.

Keywords: L-functions, trigonometric sums, Jordan totient function, Euler totient function,
mean square averages, Gauss sum, Ramanujan sum, Bernoulli numbers.

1. Introduction

Let k be a natural number > 3. A Dirichlet character χ is defined to be odd if
χ(−1) = −1 and even if χ(−1) = 1. The Dirichlet L-function L(s, χ) is defined
by the infinite series

∑∞
n=1

χ(n)
ns where s ∈ C with Re (s) > 1. It is an important

function in number theory especially due to its connection with the Rieman zeta
function ζ(s). For rational integer r, the problem of computing exact values of∑

χ mod k
χ(−1)=(−1)r

|L(r, χ)|2 (1)

and thus finding the mean square averages of this sum has been attempted in
various cases by many.

In 1982, Walum [15] gave an exact formula for the sum (1) with r = 1.
Louboutin ([6]) computed the sum of |L(1, χ)|2 over all odd primitive Dirichlet
characters modulo k. See [4, Chapter 6] for the definition of primitivity of Dirich-
let characters. In [7], Louboutin gave an exact formula for the sum of |L(1, χ)|2
over all odd Dirichlet characters in terms of the prime divisors of k and the Euler
totient function φ. He mainly used the orthogonality properties of characters and

2020 Mathematics Subject Classification: primary: 11M06; secondary: 11L05, 11L03
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Abstract

For the given graphs G and H, and for a positive integer k, the Gallai-Ramsey number is denoted by grk(G : H) and is
defined as the minimum integer n such that every coloring of the complete graph Kn using at most k colors contains either
a rainbow copy of G or a monochromatic copy of H. The k-color Ramsey number for G, denoted by Rk(G), is the minimum
integer n such that every coloring of Kn using at most k colors contains a monochromatic copy of G in some color. Let Sn be
the star graph on n edges and let Pn be the path graph on n vertices. Denote by S+

n the graph obtained from Sn by adding
an edge between any two pendant vertices. Let Tn+2 be the tree on n+2 vertices obtained from Sn by subdividing one of its
edges. In this paper, we consider grk(S3 : H), where H ∈ {Sn, S

+
n , Pn, Tn+2}, and obtain its relation with R2(H) and R3(H).

We also obtain 3-color Ramsey numbers for Sn, S+
n , and Tn+2.

Keywords: Gallai-Ramsey number; coloring; rainbow copy; monochromatic copy.

2020 Mathematics Subject Classification: 05C15, 05C55, 05D10.

1. Introduction

In this paper, edge-colorings of finite simple graphs are considered. Throughout this paper, by coloring we mean edge-
coloring. For an integer k ≥ 1, let C : E(G)→ {1, 2, ..., k} be a k-coloring of a graph G. Thus, C partitions the edge set of G,
E(G), into k sets C1, C2, · · · , Ck, where Ci consists of those edges of G that are colored with color i. Note that C need not be
a proper coloring. The color i is represented at a vertex v if some edge incident with v has color i. A coloring of a graph is
called monochromatic if all edges are colored the same, and a coloring is called rainbow if all edges are colored differently.
Given a graph G, the k-color Ramsey number for G, denoted by Rk(G), is the minimum integer n such that every coloring
of the complete graph Kn using at most k colors contains a monochromatic copy of G in some color. For the given graphs G

and H, and for a positive integer k, the Gallai-Ramsey number, denoted by grk(G : H), is defined as the minimum integer
n such that every coloring of Kn using at most k colors contains either a rainbow copy of G or a monochromatic copy of H.
For any graph H, the inequality grk(G : H) ≤ Rk(H) holds.

In 1967, Gallai [4] investigated the structures of rainbow triangle-free (i.e., there is no rainbow K3) colorings of complete
graphs and proved the following result. In honor of Gallai’s work, a coloring of a complete graph G is said to be Gallai
coloring if G is rainbow triangle-free.

Theorem 1.1. [4] In any Gallai colored complete graph G, V (G) can be partitioned into non-empty sets H1, H2, · · · , Hl,
with l ≥ 2, such that there are at most two colors between the parts, and there is only one color on the edges between every
pair of parts.

In recent years, many results on Gallai-Ramsey numbers concerning the case when G is a triangle have been reported
[2, 3, 8]. However, Gallai-Ramsey numbers for other choices of G have been much less studied. In [6], the authors proved
the following theorem for G = P4 and posed a conjecture when G = P5.

Theorem 1.2. [6] For any graph H with no isolated vertices, grk(P4 : H) = R2(H) except when H = P3 and k ≥ 3, in which
case grk(P4 : P3) = 5.

Conjecture 1.1. [6] For any graph H with no isolated vertices, grk(P5 : H) = R3(H).

Gyárfás et al. [5] proved the next result concerning 3-color Ramsey numbers of paths, which was conjectured by Faudree
and Schelp in [1].

∗Corresponding author (rubymathpkd@gmail.com).
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Theorem 1.3. [5] For sufficiently large n, R3(Pn) =

2n− 1 if n is odd,

2n− 2 if n is even.

In this paper, we consider grk(G : H) for rainbow S3 and monochromatic stars, paths and some extensions of stars.
Few results are known for the case when G = S3 and finding this number for a path is a fundamental work. Let Sn be the
star on n+ 1 vertices and n edges. Denote by S+

n the graph obtained from Sn by adding an edge between any two pendant
vertices. Let Pn be the path on n vertices and Tn+2 be the tree on n + 2 vertices obtained from the star Sn with one edge
subdivided. Let V = {v1, v2, · · · , vn} be the vertex set of the complete graph Kn. For any non-empty subset V ′ of V , the
subgraph of Kn whose vertex set is V ′ and edge set is the set of those edges of Kn that have both ends in V ′ is called the
subgraph of Kn induced by V ′, denoted by Kn[V

′].

2. Main results

In this section, 3-color Ramsey numbers for Sn, S
+
n , and Tn+2 are obtained. Also, in this section, it is shown that for all

k ≥ 3, the inequality R2(H) ≤ grk(S3 : H) ≤ R3(H) holds when H ∈ {Sn, S
+
n , Pn, Tn+2}. It is clear that gr2(S3 : H) = R2(H).

Theorem 2.1. R3(Sn) = 3n− 1.

Proof. To prove R3(Sn) ≥ 3n − 1, it is enough to show that there exist a 3-coloring of K3n−2 that does not contain a
monochromatic copy of Sn. Let us take G1 = K3n−2[{v1, v2, · · · , vn−1}], G2 = K3n−2[{vn, vn+1, · · · , v2n−2}] and G3 =

K3n−2[{v2n−1, v2n, · · · , v3n−3}]. Color the edges of Gi with color i where i = 1, 2, 3. The edge e = uv is colored with color 1 if
u ∈ G2, v ∈ G3, with color 2 if u ∈ G1, v ∈ G3 and with color 3 if u ∈ G1, v ∈ G2. Now, the edge e = uv3n−2 is assigned color
1 if u ∈ G1, color 2 if u ∈ G2 and color 3 if u ∈ G3. Under this coloring each vertex in K3n−2 is represented by color i where
i = 1, 2, 3, at most n− 1 times. Thus, K3n−2 does not contain a monochromatic copy of Sn. Hence, R3(Sn) ≥ 3n− 1.

Now, consider any 3-coloring of K3n−1 and let v be any vertex in K3n−1. Since deg(v) = 3n− 2, at least n edges incident
with v must be of same color giving a monochromatic copy of Sn. Thus, R3(Sn) ≤ 3n− 1 and hence R3(Sn) = 3n− 1.

Theorem 2.2. R3(Tn+2) = 3n.

Proof. The lower bound can be proved by showing that there exist a 3-coloring of K3n−1 that does not contain a monochro-
matic copy of Tn+2. Let G1 = K3n−1[{v1, v2, · · · , vn−1}], G2 = K3n−1[{vn, vn+1, · · · , v2n−2}] and G3 = K3n−1[{v2n−1, v2n,
· · · , v3n−3}]. Color the edges of Gi and the edges wiv3n−2, wiv3n−1, wi ∈ V (Gi) with color i where i = 1, 2, 3. The edge e = uv

is colored with color 1 if u ∈ G2, v ∈ G3, with color 2 if u ∈ G1, v ∈ G3 and with color 3 if u ∈ G1, v ∈ G2. Assign color 1 for
the edge v3n−2v3n−1. Under this coloring K3n−1 does not contain a monochromatic copy of Tn+2. So, R3(Tn+2) ≥ 3n.

To prove the upper bound consider a 3-coloring C = {C1, C2, C3} of K3n. Since deg(v3n) = 3n−1, at least n edges incident
with v3n must be of same color. Let {v3nv1, v3nv2, · · · , v3nvn} ⊆ C1. If there is an edge vivj ∈ C1, 1 ≤ i ≤ n, n+1 ≤ j ≤ 3n−1,
then K3n contains a monochromatic copy of Tn+2.

Now, suppose that each edge vivj , 1 ≤ i ≤ n, n+1 ≤ j ≤ 3n− 1 belongs to C2 or C3. Then a monochromatic copy of Tn+2

in K3n can be obtained as follows. For i = 1, 2, 3, let Ei = {vivj , n+ 1 ≤ j ≤ 3n− 1}. Then |Ei| = 2n− 1 and the edges of Ei

are colored with color 2 or color 3. So, in each Ei, n edges are of same color. Let E′i ⊂ Ei be such that |E′i| = n and all edges
of E′i are of same color. Among E′1, E

′
2, E

′
3, two of the sets must have edges in same color. Suppose C2 contains E′1 and E′2.

Then for some r, n + 1 ≤ r ≤ 3n − 1 there exists a vertex vr such that the edges v1vr ∈ E′1 and v2vr ∈ E′2. If such a vertex
vr does not exist, then the set of n end vertices of edges in E′1 and the set of n end vertices of edges in E′2 are disjoint. This
implies that there exist 2n vertices in the set {vj , n + 1 ≤ j ≤ 3n − 1}, which is not possible. Then E′1 ∪ {vrv2} will give a
monochromatic copy of Tn+2 in K3n in color 2. Thus, R3(Tn+2) ≤ 3n. Hence, R3(Tn+2) = 3n.

Lemma 2.1. Any 2-coloring of K2k+1 contains a monochromatic copy of S+
k .

Proof. Consider a 2-coloring C = {C1, C2} of K2k+1. Suppose there is a vertex v in K2k+1 such that k + 1 edges incident
with v have same color. Let {v2k+1v1, v2k+1v2, · · · , v2k+1vk+1} ⊆ C1. If there exist some edge vivj , 1 ≤ i < j ≤ k + 1, in C1,
K2k+1 contains a monochromatic copy of S+

k in color 1. Suppose such an edge does not exist. This will imply that every
edge of the induced subgraph G′ = K2k+1[{v1, v2, · · · , vk+1}] is in C2. Thus, G′ and hence K2k+1 contains a monochromatic
copy of S+

k in color 2.
Now, suppose there is no vertex in K2k+1 incident with k + 1 edges in same color. Then every vertex is incident with

exactly k edges in C1 and k edges in C2. Let {v2k+1v1, v2k+1v2, · · · , v2k+1vk} ⊆ C1. As in the case above if there exist
some edge vivj , 1 ≤ i < j ≤ k, in C1, K2k+1 contains a monochromatic copy of S+

k in color 1. If not, then every edge of
K2k+1[{v1, v2, · · · , vk}] is colored with color 2. Since vk is incident to k edges that are colored with color 2, there exist an
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edge vkvt in C2, where k+1 ≤ t ≤ 2k. Thus, {vkvi, 1 ≤ i ≤ k− 1} ∪ {vkvt} ∪ {v1v2} is a monochromatic copy of S+
k in color

2 contained in K2k+1.

Theorem 2.3. R3(S
+
n ) = 5n+ 1.

Proof. To prove the lower bound consider K5n. Let G1 = K5n[{v1, v2, · · · , vn}], G2 = K5n[{vn+1, vn+2, · · · , v2n}], G3 =

K5n[{v2n+1, v2n+2, · · · , v3n}], G4 = K5n[{v3n+1, v3n+2, · · · , v4n}] and G5 = K5n[{v4n+1, v4n+2, · · · , v5n}]. Assign color 1 to the
edges in Gi for 1 ≤ i ≤ 5. All edges in K5n between G1 and G2, G1 and G3, G2 and G4, G3 and G5, G4 and G5 are colored with
color 2. Remaining edges in K5n are colored with color 3. This gives a 3-coloring of K5n which contains a monochromatic
copy of Sn but does not contain a monochromatic copy of S+

n . So, R3(S
+
n ) ≥ 5n+ 1.

Consider a 3-coloring C = {C1, C2, C3} of K5n+1. Since deg(v5n+1) = 5n and for n ≥ 3, 3(n+ 2) ≤ 5n, at least n+ 2 edges
incident with v5n+1 must have same color. Now, either n + 2 or n + 1 must be an odd number and let that odd number be
2k + 1 for some integer k. Let {v5n+1v1, v5n+1v2, · · · , v5n+1vn+2} ⊆ C1. If there is an edge vivj ∈ C1, 1 ≤ i < j ≤ n+ 2, then
K5n+1 contains a monochromatic copy of S+

n .
If there is no such edge, G1 = K5n+1[{v1, v2, · · · , v2k+1}] must be 2-colored. Also G1 is isomorphic to the complete graph

K2k+1. Then by Lemma 2.1, G1 contains a monochromatic copy of S+
k in color 2 and let {v1, v2, · · · , vk, vk+1} be the vertices

of S+
k ⊆ G1, where vk+1 is the hub vertex. If there are n− k edges in K5n+1 \ S+

k in color 2 incident with vk+1, then K5n+1

contains a monochromatic copy of S+
n .

Otherwise at most n− k − 1 edges in color 2 are incident with vk+1. So, at least 4n+ 1 edges incident with vk+1 are in
C1 or C3. Among these, 2n + 1 edges must be in Ct where t = 1 or 3. Let {vk+1v5n, vk+1v5n−1, · · · , vk+1v3n} ⊆ Ct and let
G2 = K5n+1[{v3n, v3n+1, · · · , v5n}]. If there is an edge vrvs, 3n ≤ r < s ≤ 5n in color t, then K5n+1 contains a monochromatic
copy of S+

n .
If there is no such edge, then G2 is 2-colored. Then by Lemma 2.1, there is a monochromatic copy of S+

n in G2 and hence
in K5n+1. So, R3(S

+
n ) ≤ 5n+ 1. Hence, R3(S

+
n ) = 5n+ 1.

Lemma 2.2. grk(S3 : H) ≥ R2(H), where H ∈ {Sn, Tn+2, Pn, S
+
n }.

Proof. By the definition of R2(H), there is a 2-coloring of Km where m = R2(H) − 1 which has no monochromatic copy of
H. Since only two colors are used, Km cannot have a rainbow copy of S3. So, grk(S3 : H) ≥ R2(H).

Theorem 2.4. grk(S3 : Sn) = 2n.

Proof. Consider K2n−1. Color the edges of the induced subgraphs G1 = K2n−1[{v1, v2, · · · , vn−1}] and G2 = K2n−1[{vn, vn+1,
· · · , v2n−2}] with color 1 and color 2 respectively. Use color 3 for the edges between G1 and G2. The edges between the
vertices of G1 and v2n−1 are colored with color 1 and those between G2 and v2n−1 are colored with color 2. Now, every
vertex of K2n−1 are two colored and hence there does not exist a rainbow S3 in K2n−1. Only a monochromatic Sn−1 could
be obtained with the above coloring. Hence, grk(S3 : Sn) ≥ 2n.

Let C be a k-coloring of K2n. If there is a vertex in K2n represented by at least 3 colors, a rainbow copy of S3 is obtained.
If not, C is such that every vertex of K2n is at most 2-colored. Let v be a vertex of K2n. Since degree of v is 2n− 1, n edges
incident with v must be of same color. These n edges gives a monochromatic copy of Sn in K2n. Hence, grk(S3 : Sn) ≤ 2n.
Thus, grk(S3 : Sn) = 2n.

Theorem 2.5. R2(Sn) ≤ grk(S3 : Sn) ≤ R3(Sn).

Proof. From Lemma 2.2, Theorem 2.1, and Theorem 2.4, the result follows.

Theorem 2.6. grk(S3 : Tn+2) = 2n+ 1.

Proof. Consider the complete graph K2n. Color the edges of the induced subgraph G1 = K2n[{v1, v2, · · · , vn+1}] with color
1. Now, color all the edges except the edge v1vn+1 of the induced subgraph G2 = K2n[{vn+1, vn+2, · · · , v2n, v1}] with color 2.
Use color 3 for the edges connecting the vertices of G1\{v1, vn+1} and G2\{v1, vn+1}. Only a monochromatic Sn is obtained
with the above coloring in color 1 and color 2. In color 3 a monochromatic Sn−1 is obtained. So, grk(S3 : Tn+2) ≥ 2n+ 1.

Let C = {C1, C2, · · · , Ck} be a k-coloring of K2n+1. If there is a vertex in K2n+1 represented by at least 3 colors, a
rainbow copy of S3 is obtained. If not, C is such that every vertex of K2n+1 is at most 2-colored. Since degree of v2n+1 is
2n, at least n edges incident with v2n+1 must be of same color. Without loss of generality, let the edges v2n+1vi, 1 ≤ i ≤ n

be in C1. Let W1 = {v1, v2, · · · , vn} and W2 = {vn+1, vn+2, · · · , v2n}. If there is an edge in C1 with one end in W1 and
other end in W2, a monochromatic copy of Tn+2 in color 1 exist. If not, each v1w,w ∈ W2 must be in C2. Now, if each
v2w,w ∈ W2 is in C2, {v1w : w ∈ W2} ∪ {v2v2n} gives a monochromatic copy of Tn+2 in color 2. If each v2w,w ∈ W2 is in
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C3, v3v2n must be in C2 or C3. If v3v2n ∈ C2, {v1w : w ∈ W2} ∪ {v3v2n} gives a monochromatic copy of Tn+2 in color 2.
Otherwise {v2w : w ∈ W2} ∪ {v3v2n} gives a monochromatic copy of Tn+2 in color 3. Hence, grk(S3 : Tn+2) ≤ 2n+ 1. Thus,
grk(S3 : Tn+2) = 2n+ 1.

Theorem 2.7. R2(Tn+2) ≤ grk(S3 : Tn+2) ≤ R3(Tn+2).

Proof. From Lemma 2.2, Theorem 2.2, and Theorem 2.6, the result follows.

Theorem 2.8. grk(S3 : S+
n ) = 2n+ 1, where S+

n is obtained from Sn by adding an edge between any two pendant vertices.

Proof. Consider the complete graph K2n. Color the edges of the induced subgraphs G1 = K2n[{v1, v2, · · · , vn}] and G2 =

K2n[{vn+1, vn+2, · · · , v2n}] with color 1 and color 2 respectively. Use color 3 for the edges between G1 and G2. Now, every
vertex of K2n are two colored and hence there does not exist a rainbow S3 in K2n. Only a monochromatic Sn could be
obtained with the above coloring. Hence, grk(S3 : S+

n ) ≥ 2n+ 1.
Let C = {C1, C2, · · · , Ck} be a k-coloring of K2n+1. If there is a vertex in K2n+1 represented by at least 3 colors, a rainbow

copy of S3 is obtained. If not, C is such that every vertex of K2n+1 is at most 2-colored.
Assume that there is a vertex in K2n+1 incident with n + 1 edges and all these edges have the same color. Let

{v1v2n+1, v2v2n+1, · · · , vn+1v2n+1} ⊆ C1 and let G1 = K2n+1[{v1, v2, · · · , vn+1}]. If there is an edge in C1 which belongs to G1,
we get a monochromatic copy of S+

n in color 1. If not, every edge of G1 must be in C2. Then G1 contains a monochromatic
copy of S+

n in color 2.
Now, assume that there does not exist such a vertex. Then each vertex must have n edges in one color and n edges

in another color. Let these edges be v1v2n+1, v2v2n+1, · · · , vnv2n+1 in C1 and let G2 = K2n+1[{v1, v2, · · · , vn}]. If there is
an edge in C1 which belongs to G2, a monochromatic copy of S+

n is obtained in color 1. If not, every edge of G2 is in C2.
Now, vn is incident with n − 1 edges in C2. Since vn must have n edges in color 2, there must exist an edge vrvn in C2 for
some r, n + 1 ≤ r ≤ 2n. Then v1vn, v2vn, · · · , vn−1vn, vrvn and v1v2 gives a monochromatic copy of S+

n in color 2. Hence,
grk(S3 : S+

n ) ≤ 2n+ 1. So, grk(S3 : S+
n ) = 2n+ 1.

Theorem 2.9. R2(S
+
n ) ≤ grk(S3 : S+

n ) ≤ R3(S
+
n ).

Proof. From Lemma 2.2, Theorem 2.3, and Theorem 2.8, the result follows.

Theorem 2.10. For n ≥ 3, R2(Pn) ≤ grk(S3 : Pn) ≤ R3(Pn).

Proof. The lower bound is clear from Lemma 2.2. When at most three colors are used, from the definition of R3(Pn) it
is clear that grk(S3 : Pn) ≤ R3(Pn). Suppose at least four colors are used. The upper bound is established by applying
induction on n. R3(P3) = 5 (from [7]) and in any k-coloring of K5 without a rainbow S3, each vertex of K5 must be incident
with at most 2 colors. Since deg(v) = 4 ∀ v ∈ K5, at least two edges incident to v must be of same color, which is a
monochromatic copy of P3. Thus, grk(S3 : P3) ≤ R3(P3).

Suppose that grk(S3 : Pn−1) ≤ R3(Pn−1). The inequality grk(S3 : Pn) ≤ R3(Pn) is to be proved. Let m = R3(Pn).
It is enough to show that any k-coloring of Km contains a rainbow copy of S3 or a monochromatic copy of Pn. Let C =

{C1, C2, · · · , Ck} be a k-coloring of Km. Suppose that Km does not contain a rainbow copy of S3. Then at most two colors
are represented at each vertex of Km. Here it will be proved that Km contains a monochromatic copy of Pn. Observe
that R3(Pn−1) ≤ R3(Pn). Then from the induction hypothesis we get grk(S3 : Pn−1) ≤ R3(Pn) = m. Since Km does not
contain a rainbow copy of S3, it must contain a monochromatic copy of Pn−1. Without loss of generality, let v1v2 · · · vn−1 be
a monochromatic copy of Pn−1 in color 1. Let G1 = Km[{v2, v3, · · · , vn−2}] and G2 = Km[{vn, vn+1, · · · , vm}]. If there is an
edge v1w or vn−1w for some w ∈ G2 in color 1, then Km contains a monochromatic copy of Pn. If not, for all w ∈ G2 the edges
v1w /∈ C1 and vn−1w /∈ C1. Since v1v2 ∈ C1, all the edges v1w, w ∈ G2 must belong to Ci for some fixed i, i ≥ 2 (otherwise a
rainbow copy of S3 is obtained at v1). Same argument holds for vn−1w, w ∈ G2. Consider the following cases.

Case 1. For all w ∈ G2, v1w ∈ C2 and vn−1w ∈ C3.
The colors, color 2 and color 3 are represented at each vertex of G2, color 1 and color 2 at v1, color 1 and color 3 at vn−1

(see Figure 1). The edges vnu, u ∈ G1 must be in C2 or C3 and hence two colors are represented at each vertex of G1. Thus,
two colors are represented at each vertex of Km using color 1, color 2 or color 3. So, in this case k ≥ 4 is not possible (If
k ≥ 4, then Km contains a rainbow copy of S3). When k = 3 the existence of a monochromatic copy of Pn in Km is assured
by the definition of R3(Pn), since m = R3(Pn) is the smallest integer such that every coloring of Km with at most 3 colors
will contain a monochromatic copy of Pn.
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v1 vn−1

v2 v3 vn−3 vn−2

vm vm−1 vn+1 vn

col
or

1 color 1

color 2 col
or

3

Figure 1: Case 1 of the proof of Theorem 2.10.

Case 2. For all w ∈ G2, both v1w and vn−1w are in C2.

Subcase 2.1. For some i ≥ 3, Km has an edge in Ci with one end in G1 and the other in G2.
Without loss of generality suppose that Km has an edge in C3 with one end in G1 and the other in G2. Let vrvs belong to
C3 where vr ∈ G1, vs ∈ G2. Then color 1 and color 3 are represented at vr, color 2 and color 3 are represented at vs (see
Figure 2). So, each edge vsu, u ∈ G1 must be in C2 or C3 (otherwise a rainbow copy of S3 is obtained at vs) and the edges
vrw,w ∈ G2 must be in C1 or C3 (otherwise a rainbow copy of S3 is obtained at vr). Then two colors are represented at each
vertex of Km. So, as in case 1, k ≥ 4 is not possible and when k = 3, by definition of R3(Pn) there exist a monochromatic
copy of Pn in Km.

v1 vn−1

v2 v3 vr vn−3 vn−2

vm vm−1 vs vn+1 vn

colo
r 1 color 1

color 3color 2 col
or

2

Figure 2: Subcase 2.1 of the proof of Theorem 2.10.

Subcase 2.2. For any i, i ≥ 3, Km has no edge in Ci with one end in G1 and the other in G2.
Since at least four colors are used to color the edges of Km, C3 is non empty. From the supposition of this subcase, the
edges having color 3 must belong to G1 or G2 (or both). Then two cases are to be considered.

Subcase 2.2.1. Suppose G2 contains an edge that belongs to C3.
Let vrvs be the edge of G2 that belongs to C3 (see Figure 3).

Claim 1. Two colors, color 1 and color 2 are represented at every vertex of V (G1) ∪ {v1, vn−1}.
From the supposition of case 2, v1vr ∈ C2, so color 2 is represented at vr. Thus, two colors, color 2 and color 3 are represented
at vr. Consider the edges vru, u ∈ G1. Then vru must have color 2 or color 3 (otherwise a rainbow copy of S3 is obtained at
vr). From the supposition of subcase 2.2, vru /∈ C3 and hence vru ∈ C2 for all u ∈ G1. Since u ∈ G1, color 1 is represented
at u. Thus, two colors, color 1 and color 2, are represented at each vertex of G1. So, any edge from G1 to G2 must be in C1

or C2 (otherwise a rainbow copy of S3 is obtained). Also color 1 and color 2 are represented at the vertices v1, vn−1 (from
the supposition of case 2). Thus, two colors, color 1 and color 2 are represented at the vertices of V (G1) ∪ {v1, vn−1}.

Let W = {w ∈ G2 : uw ∈ C2 ∀ u ∈ G1}. Since vru ∈ C2 for all u ∈ G1, vr ∈W and hence W 6= ∅. Consider the set Km\W .

Claim 2. Two colors, color 1 and color 2 are represented at every vertex of Km\W .
V (Km\W ) = V (G1) ∪ {v1, vn−1} ∪ V (G2\W ). If G2\W = ∅, then V (Km\W ) = V (G1) ∪ {v1, vn−1}. Hence, from claim 1,
color 1 and color 2 are represented at every vertex of V (Km\W ). Suppose G2\W 6= ∅. Let x be a vertex of G2\W . Since
x ∈ G2, color 2 is represented at x and since x /∈W , there exist some u ∈ G1 such that ux /∈ C2. So, ux ∈ C1, since any edge
from G1 to G2 must be in C1 or C2. Thus, two colors, color 1 and color 2, are represented at each vertex of G2\W . Also from
claim 1, color 1 and color 2 are represented at each vertex of G1 and at the vertices v1, vn−1. Hence, color 1 and color 2 are
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represented at every vertex of Km\W . Thus, claim 2 is proved.

So, every edge that is not colored using color 1 or color 2 must be in Km[W ] (otherwise a rainbow copy of S3 is obtained at
a vertex of Km\W ).

i) Let |W | ≥
⌊
n
2

⌋
. Then v1w1v2w2 . . . vn

2
wn

2
is a monochromatic copy of Pn in color 2 when n is even and v1w1v2w2 . . .

vbn2 cwb
n
2 cvb

n
2 c+1 is a monochromatic copy of Pn in color 2 when n is odd, where wi ∈W for i ≥ 1.

v1 vn−1

v2 v3 vn−3 vn−2

vm vm−1

vr vs

vn+1 vn
W

colo
r 1 color 1

color 3

color 2 col
or

2

color2

Figure 3: Subcase 2.2.1 of the proof of Theorem 2.10.

ii) Let |W | <
⌊
n
2

⌋
. It will be proved that Km contains a monochromatic copy of Pn in color 1 or color 2. For that construct

a 3-coloring of Km from C using color 1, color 2 and color 3. Under C every edge of E(Km)\E(W ) is in color 1 or color
2 (from claim 2). Recolor the edges of Km[W ] alone using color 3. This recoloring gives a new 3-coloring, C′, of Km.
Then, from the definition of R3(Pn), Km contains a monochromatic copy of Pn under C′. All the edges of Km having
color 3 under C′ belongs to Km[W ] and hence if the monochromatic copy of Pn under C′ is in color 3, then it must be
contained in Km[W ]. But |W | <

⌊
n
2

⌋
. So, the monochromatic copy of Pn under C′ is not in Km[W ]. This implies that

the monochromatic copy of Pn in Km under C′ is not in color 3 and hence it is either in color 1 or in color 2. Without
loss of generality suppose that the monochromatic copy of Pn under C′ is in color 1 and let e1e2 . . . en−1 be the edges
in Pn. It is to be noted that every edge of Km having color 1 or color 2 under C′ had the same color under C. Then
these ei’s will have color 1 in Km under C and hence a monochromatic copy of Pn in color 1 is obtained under C.

Subcase 2.2.2. Suppose that G2 does not contain an edge that belongs to C3.
From the supposition in subcase 2.2, every edge in C3 must be in G1. Let vrvs be an edge in G1 that belong to C3. Then
color 1 and color 3 is represented at vr. So, the edges vrw,w ∈ G2 must be in C1 or C3 (otherwise a rainbow copy of S3 is
obtained at vr). From the supposition of subcase 2.2 vrw cannot have color 3. So, for all w ∈ G2, vrw is in color 1. Thus,
two colors, color 1 and color 2, are represented at each vertex in G2 and at the vertices v1, vn−1. Recolor G1 with color 3
to obtain a 3-coloring C′ of Km. Then from the definition of R3(Pn), Km contains a monochromatic copy of Pn under C′.
Since |G1| < n, this monochromatic copy of Pn is not in color 3 and hence it is either in color 1 or in color 2. Then the same
monochromatic copy of Pn in Km under C′ can be obtained under C. Thus, in all cases grk(S3 : Pn) ≤ R3(Pn).

Remark 2.1. Let us consider an example for which strict inequality holds in Theorem 2.10. We have R3(P3) = 5. But,
grk(S3 : P3) = 4. Consider a k-coloring of K4 that does not contain a rainbow S3. Then at most two colors are represented
at each vertex of K4. Since the degree of each vertex of K4 is three, there exist at least two edges in the same color incident
with each vertex of K4, giving a monochromatic copy of P3. So, grk(S3 : P3) ≤ 4. Now, the complete graph on three vertices,
C3 does not contain a rainbow copy of S3 or a monochromatic copy of P3 in any 3-coloring. Hence, grk(S3 : P3) = 4.
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Abstract

For an ordered k-decomposition D = {G1, G2, . . . , Gk} of a con-
nected graph G = (V,E), the D-representation of an edge e is the k-
tuple γ(e/D) = (d(e,G1), d(e,G2), . . . , d(e,Gk)), where d(e,Gi) rep-
resents the distance from e to Gi. A decomposition D is resolving if
every two distinct edges of G have distinct representations. The min-
imum k for which G has a resolving k-decomposition is its decomposi-
tion dimension dec(G). In this paper, the decomposition dimension of
corona product of the path Pn and cycle Cn with the complete graphs
K1 and K2 are determined.
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1. Introduction

Let G = (V,E) be a finite undirected connected graph without loops or
multiple edges. A decomposition of a graphG is a collection of subgraphs of
G, none of which have isolated vertices, whose edge sets provide a partition
of E(G). A decomposition of G into k subgraphs is a k-decomposition
of G. A decomposition D = {G1, G2, . . . , Gk} is ordered if the ordering
(G1,G2, . . . , Gk) has been imposed on D. If each subgraph Gi of D is
isomorphic to a graph H, then D is said to be an H-decomposition of G.

For edges e, f ∈ E(G), the distance d(e, f) between e and f is the
minimum non negative integer k for which there exists a sequence e =
e0, e1, e2, . . . , ek = f of edges of G such that ei and ei+1 are adjacent
for i = 0, 1, . . . , k − 1. For an edge e of G and a subgraph F of G,
d(e, F ) = min{d(e, f), f ∈ E(F )}. Let D = {G1, G2, . . . , Gk} be an or-
dered k-decomposition of G. The D-representation of an edge e is the k-
tuple γ(e/D) = (d(e,G1), d(e,G2), . . . , d(e,Gk)), where d(e,Gi) represents
the distance from e to Gi. We call D a resolving k-decomposition if for any
pair of edges e and f , there exists some index i such that d(e,Gi) 6= d(f,Gi).
The minimum k for which G has a resolving k-decomposition is its decom-
position dimension dec(G). These concepts were introduced by Chartrand
et.al in [1]. It is further studied in [2,3,8].

The concepts of resolving set and minimum resolving set have appeared
in the literature previously. Slater introduced and studied these ideas with
a different terminology ’locating set’ in [9]. Harary and Melter [4] discov-
ered these concepts independently. Later these concepts were rediscovered
by Johnson in [5]. Chartrand et.al [1] proved that dec(G) ≥ 3 for all
connected graphs G that are not paths and for a tree T of order n and
diameter d, dec(T ) ≤ n− d+ 1. M. Hagita, A. Kundgen and D. B. West
[3] used probabilistic methods to obtain upper bounds for decomposition
dimension of complete graphs and regular graphs. H. Enomoto and T.
Nakamigawa [2] established a lower bound for decomposition dimension of
graphs using the maximum degree of G. They proved that for any graph
G, dec(G) ≥ dlog2∆(G)e + 1. Reji T. and Ruby R. studied about decom-
position dimension of cartesian product of graphs in [6].

The corona product, G1 ¯ G2 of two graphs G1 (with n1 vertices and
m1 edges) and G2 (with n2 vertices and m2 edges) is defined as the graph
obtained by taking one copy of G1 and n1 copies of G2, and then joining
the ith vertex of G1 with an edge to every vertex in the ith copy of G2.
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Metric dimension and partition dimension, which distinguishes the vertices
of a graph using distance, of corona product of graphs are studied in [7,10].

2. Main Results

Define α+i : R
n → Rn by α+i (x1, . . . , xi, . . . , xn) = (x1, . . . , xi + 1, . . . , xn)

and α−i : R
n → Rn by α−i (x1, . . . , xi, . . . , xn) = (x1, . . . , xi − 1, . . . , xn)

Theorem 1. dec(Pn ¯K1) =

(
2 if n = 2
3 if n ≥ 3

Proof. Case 1: n = 2
The corona product of the path P2 and the complete graph K1, P2¯K1 is
the path P4. Hence dec(P2 ¯K1) = 2.

Figure 1. P2 ¯K1.

Case 2: n ≥ 3
The corona product of the path Pn and the complete graph K1, Pn ¯K1

is also known as the n-centipede graph. Let v1, v2, . . . , vn be the n vertices
and e1, e2, . . . , en−1 be the n − 1 edges of the path Pn. Label the edges
joining the vertex vi in Pn and K1 as fi, 1 ≤ i ≤ n.

Figure 2. Pn ¯K1.

pc
di1

pc
di2
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Consider the decompositionD = {G1, G2, G3} of Pn¯K1 whereE(G1) =
{f1}, E(G2) = {fn} and E(G3) consists of all other edges of Pn ¯ K1.
Then γ(f1/D) = (0, n, 1), γ(fn/D) = (n, 0, 1), γ(fi/D) = (i, n + 1 − i, 0),
2 ≤ i ≤ n−1 and γ(ei/D) = (i, n− i, 0), 1 ≤ i ≤ n− 1. Thus D is a resolv-
ing decomposition of Pn ¯K1. So dec(Pn ¯K1) ≤ 3. Since Pn ¯K1 is not
a path dec(Pn ¯K1) ≥ 3. Hence dec(Pn ¯K1) = 3. 2

Theorem 2. dec(P2 ¯K2) = 3 and dec(Pn ¯K2) ≤ 4, if n ≥ 3

Proof. Case 1: n = 2
Consider the graph P2 ¯K2. Let v1, v2 be the vertices of the path P2 and
e1 be the edge joining v1 and v2 in P2. For i = 1, 2 label the edges joining
the vertex vi in P2 and K2 as fi, gi and let hi be the edge in K2 adjacent
to the edges fi and gi.

Figure 3. P2 ¯K2.

Consider the decompositionD = {G1, G2, G3} of P2¯K2 whereE(G1) =
{g1}, E(G2) = {g2} and E(G3) consists of all other edges of P2¯K2. Then
γ(g1/D) = (0, 2, 1), γ(g2/D) = (2, 0, 1), γ(f1/D) = (1, 2, 0), γ(f2/D) = (2, 1, 0),
γ(h1/D) = (1, 3, 0), γ(h2/D) = (3, 1, 0), γ(e1/D) = (1, 1, 0). Thus D is a re-
solving decomposition of P2 ¯K2. So dec(P2 ¯K2) ≤ 3. Since P2 ¯K2 is
not a path, dec(P2 ¯K2) ≥ 3. Hence dec(P2 ¯K2) = 3.

Case 2: n ≥ 3
Consider the corona product of the path Pn and the complete graph K2,
Pn ¯ K2. Let v1, v2, . . . , vn be the n vertices and e1, e2, . . . , en−1 be the
n − 1 edges of the path Pn. For i = 1, 2, . . . , n label the edges joining the
vertex vi in Pn and K2 as fi, gi and let hi be the edge in K2 adjacent to
the edges fi and gi.

pc
di3
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Figure 4. Pn ¯K2.

Since Pn ¯K2 is not a path, dec(Pn ¯K2) ≥ 3. Consider the decom-
position D = {G1, G2, G3, G4} of Pn ¯K2 where E(G1) = {g1}, E(G2) =
{g2, g3, . . . , gn−1}, E(G3) = {gn} and E(G4) consists of all other edges of
Pn ¯K2.

Then γ(g1/D) = (0, 2, n, 1), γ(gn/D) = (n, 2, 0, 1), γ(f1/D) = (1, 2, n, 0),
γ(fn/D) = (n, 2, 1, 0), γ(h1/D) = (1, 3, n+ 1, 0), γ(hn/D) = (n+ 1, 3, 1, 0),
γ(ei/D) = (i, 1, n− i, 0), 1 ≤ i ≤ n− 1.
For 2 ≤ i ≤ n−1, γ(gi/D) = (i, 0, n+ 1− i, 1), γ(fi/D) = (i, 1, n+ 1− i, 0),
γ(hi/D) = (i+ 1, 1, n+ 2− i, 0). Thus D is a resolving decomposition of
Pn ¯K2. So dec(Pn ¯K2) ≤ 4. 2

Theorem 3. dec(Cn ¯K1) = 3

Proof. Consider the corona product of the cycle Cn and the complete
graph K1, Cn¯K1. Let v1, v2, . . . , vn be the n vertices of the path Cn and
e1, e2, . . . , en be the n edges of the cycle Cn. Label the edges joining the
vertex vi in Cn and K1 as fi, 1 ≤ i ≤ n.

pc
di4
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Figure 5. Cn ¯K1.

Let n ≥ 3 be any positive integer. Then n = 3k−1 or 3k or 3k+1, where
k = 1, 2, . . .. Consider the decomposition D = {G1, G2, G3} of Cn ¯K1.

Case 1: n = 3k − 1

Let E(G1) = {f1, fn, fn−1, . . . , fn−k+3}, E(G2) = {f2, f3, . . . , fk+1} and
E(G3) consists of all other edges of Cn ¯K1. Then

γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2, 1) if i = 1
(i, 0, 1) if 2 ≤ i ≤ k + 1
(k + 1, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(fi−1)) if k + 3 ≤ i ≤ n− k + 2
(0, k, 1) if i = n− k + 3
α−2 (γ(fi−1)) if n− k + 4 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i, 1, 0) if 1 ≤ i ≤ k + 1
(k, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(ei−1)) if k + 3 ≤ i ≤ n− k + 2
(1, k − 1, 0) if i = n− k + 3
α−2 (γ(ei−1)) if n− k + 4 ≤ i ≤ n

Case 2: n = 3k or 3k + 1
Let E(G1) = {f1, fn, fn−1, . . . , fn−k+2}, E(G2) = {f2, f3, . . . , fk+1} and

pc
di5
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E(G3) consists of all other edges of Cn ¯K1.
When n = 3k

γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2, 1) if i = 1
(i, 0, 1) if 2 ≤ i ≤ k + 1
(k + 1, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(fi−1)) if k + 3 ≤ i ≤ n− k + 1
(0, k + 1, 1) if i = n− k + 2
α−2 (γ(fi−1)) if n− k + 3 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i, 1, 0) if 1 ≤ i ≤ k + 1
(k, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(ei−1)) if k + 3 ≤ i ≤ n− k + 1
(1, k, 0) if i = n− k + 2
α−2 (γ(ei−1)) if n− k + 3 ≤ i ≤ n

When n = 3k + 1

γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2, 1) if i = 1
(i, 0, 1) if 2 ≤ i ≤ k + 1
(k + 2, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(fi−1)) if k + 3 ≤ i ≤ n− k + 1
(0, k + 1, 1) if i = n− k + 2
α−2 (γ(fi−1)) if n− k + 3 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i, 1, 0) if 1 ≤ i ≤ k + 1
(k + 1, 2, 0) if i = k + 2
(α−1 ◦ α+2 )(γ(ei−1)) if k + 3 ≤ i ≤ n− k
(1, k + 1, 0) if i = n− k + 1
α−2 (γ(ei−1)) if n− k + 2 ≤ i ≤ n
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Thus D is a resolving decomposition of Cn¯K1. So dec(Cn¯K1) ≤ 3.
Since Cn ¯K1 is not a path dec(Cn ¯K1) ≥ 3. Hence dec(Cn ¯K1) = 3.
2

Theorem 4. dec(Cn ¯K2) ≤ 4

Proof. Consider the corona product of the cycle Cn and the complete
graph K2, Cn¯K2. Let v1, v2, . . . , vn be the n vertices of the path Cn and
e1, e2, . . . , en be the n edges of the cycle Cn. For i = 1, 2, . . . , n label the
edges joining the vertex vi in Cn and K2 as fi, gi and let hi be the edge in
K2 adjacent to the edges fi and gi.

Figure 6. Cn ¯K2.

Let n be any positive integer. By division algorithm there exists positive
integers q, r such that n = 3q+r where r = 0 or 1 or 2. Since Cn¯K2 is not a
path, dec(Cn¯K2) ≥ 3. Consider the decomposition D = {G1, G2, G3, G4}
of Cn ¯K2.

Case 1: n = 3q

Let E(G1) = {g1, g2, . . . , gq}, E(G2) = {gq+1, gq+2, . . . , g2q},
E(G3) = {g2q+1, g2q+2, . . . , gn} and E(G4) consists of all other edges of
Cn ¯K2. Then

pc
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γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, q + 2− i, i+ 1, 0) if 1 ≤ i ≤ q
(2, 1, q + 1, 0) if i = q + 1
(α+1 ◦ α−3 )(γ(fi−1)) if q + 2 ≤ i ≤ 2q
(q + 1, 2, 1, 0) if i = 2q + 1
(α−1 ◦ α+2 )(γ(fi−1)) if 2q + 2 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎨⎪⎩
(1, q + 1− i, i+ 1, 0) if 1 ≤ i ≤ q
(α+1 ◦ α−3 )(γ(ei−1)) if q + 1 ≤ i ≤ 2q
(α−1 ◦ α+2 )(γ(ei−1)) if 2q + 1 ≤ i ≤ n

γ(hi/D) =

⎧⎪⎨⎪⎩
(α+2 ◦ α+3 )(γ(fi)) if 1 ≤ i ≤ q
(α+1 ◦ α+3 )(γ(fi)) if q + 1 ≤ i ≤ 2q
(α+1 ◦ α+2 )(γ(fi)) if 2q + 1 ≤ i ≤ n

γ(gi/D), 1 ≤ i ≤ n is obtained by replacing 1 and 0 in corresponding
γ(fi/D) by 0 and 1.

Case 2: n = 3q + 1
Let E(G1) = {g1, gn, . . . , gq+1}, E(G2) = {gq+2, gq+2, . . . , g2q+1},
E(G3) = {g2q+2, g2q+3, . . . , gn} and E(G4) consists of all other edges of
Cn ¯K2. Then
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γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, q + 3− i, i+ 1, 0) if 1 ≤ i ≤ q + 1
(2, 1, q + 1, 0) if i = q + 2
(α+1 ◦ α−3 )(γ(fi−1)) if q + 3 ≤ i ≤ 2q + 1
(q + 1, 2, 1, 0) if i = 2q + 2
(α−1 ◦ α+2 )(γ(fi−1)) if 2q + 3 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, q + 2− i, i+ 1, 0) if 1 ≤ i ≤ q
(1, 1, q + 1, 0) if i = q + 1
(α+1 ◦ α−3 )(γ(ei−1)) if q + 2 ≤ i ≤ 2q + 1
(α−1 ◦ α+2 )(γ(ei−1)) if 2q + 2 ≤ i ≤ n

γ(hi/D) =

⎧⎪⎨⎪⎩
(α+2 ◦ α+3 )(γ(fi)) if 1 ≤ i ≤ q + 1
(α+1 ◦ α+3 )(γ(fi)) if q + 2 ≤ i ≤ 2q + 1
(α+1 ◦ α+2 )(γ(fi)) if 2q + 2 ≤ i ≤ n

γ(gi/D), 1 ≤ i ≤ n is obtained by replacing 1 and 0 in corresponding
γ(fi/D) by 0 and 1.

Case 3: n = 3q + 2
Let E(G1) = {g1, gn, . . . , gq+1}, E(G2) = {gq+2, gq+3, . . . , g2q+2}, E(G3) =
{g2q+3, g2q+4, . . . , gn} and E(G4) consists of all other edges of Cn ¯ K2.
Then
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γ(fi/D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1, q + 3− i, i+ 1, 0) if 1 ≤ i ≤ q + 1
(2, 1, q + 2, 0) if i = q + 2
(α+1 ◦ α−3 )(γ(fi−1)) if q + 3 ≤ i ≤ 2q + 2
(q + 1, 2, 1, 0) if i = 2q + 3
(α−1 ◦ α+2 )(γ(fi−1)) if 2q + 4 ≤ i ≤ n

γ(ei/D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, q + 2− i, i+ 1, 0) if 1 ≤ i ≤ q + 1
(α+1 ◦ α−3 )(γ(ei−1)) if q + 2 ≤ i ≤ 2q + 1
(q + 1, 1, 1, 0) if i = 2q + 2
(α−1 ◦ α+2 )(γ(ei−1)) if 2q + 3 ≤ i ≤ n

γ(hi/D) =

⎧⎪⎨⎪⎩
(α+2 ◦ α+3 )(γ(fi)) if 1 ≤ i ≤ q + 1
(α+1 ◦ α+3 )(γ(fi)) if q + 2 ≤ i ≤ 2q + 2
(α+1 ◦ α+2 )(γ(fi)) if 2q + 3 ≤ i ≤ n

γ(gi/D), 1 ≤ i ≤ n is obtained by replacing 1 and 0 in corresponding
γ(fi/D) by 0 and 1.

Thus D is a resolving decomposition of Cn¯K2. So dec(Cn¯K2) ≤ 4.
2
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Abstract A graph G without isolated vertices is a least common multiple of two graphs H1
and H2 if G is a smallest graph, in terms of number of edges, such that there exists a decompo-
sition of G into edge disjoint copies of H1 and H2. The collection of all least common multiples
of H1 and H2 is denoted by LCM(H1, H2) and the size of a least common multiple of H1
and H2 is denoted by lcm(H1, H2). In this paper lcm(P4, Cm � Pn), lcm(P4,Wm � Pn) and
lcm(P4,Wm � Cn) are determined where the product is the cartesian product.

1 Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices.
The size of a graph G is the number of edges of G denoted by |E(G)|. A graph H is said to
divide a graph G if there exists a set of subgraphs of G, each isomorphic to H , whose edge sets
partition the edge set of G. Such a set of subgraphs is called an H-decomposition of G. G is
said to be H-decomposable if G has an H- decomposition and write H|G.

A graph G is called a common multiple of two graphs H1 and H2 if both H1|G and H2|G.
A graph G is a least common multiple of H1 and H2 if G is a common multiple of H1 and H2
and no other common multiple has fewer edges. Several authors have investigated the problem
of finding least common multiples of pairs of graphs H1 and H2; that is graphs of minimum size
which are both H1 and H2 decomposable. The problem was introduced by Chartrand et.al in [4]
and they showed that every two nonempty graphs have a least common multiple. The problem of
finding the size of least common multiples of graphs has been studied for several pairs of graphs:
cycles and stars [4, 13, 14], paths and complete graphs [9], pairs of cycles [8], pairs of complete
graphs [3], complete graphs and a 4-cycle [2], pairs of cubes [1], complete graph and star [11]
and paths and stars [7]. Pairs of graphs having a unique least common multiple were investigated
by several authors [6, 12, 10]. Least common multiple of digraphs were considered in [5].

An obvious necessary condition for the existence of a graph G which is a common multiple
of H1 and H2 is that both |E(H1)| and |E(H2)| divide |E(G)|. This condition is not always
sufficient. Therefore, we may ask: Given two graphs H1 and H2, for which value of q does
there exist a graph G having q edges which is a common multiple of the graphs H1 and H2?
Adams, Bryant and Maenhaut [2] gave a complete solution to this problem in the case where H1
is the 4-cycle and H2 is a complete graph; Bryant and Maenhaut [3] gave a complete solution to
this problem in the case where H1 is the complete graph K3 and H2 is a complete graph. Thus
the problem to find least common multiple of H1 and H2 is to find the least positive integer q
such that there exists a graph G having q edges which is both H1 and H2 decomposable. We
denote the set of all least common multiples of H1 and H2 by LCM(H1, H2). The size of a least
common multiple of H1 and H2 is denoted by lcm(H1, H2). Since every two nonempty graphs
have a least common multiple, LCM(H1, H2) is nonempty. The number of elements in the set
LCM(H1, H2) is greater than one for many pairs of graphs. For example both P7 and C6 are
least common multiples of P4 and P3.

In fact, Chartrand et.al [6] proved that for every positive integer n there exist two graphs
having exactly n least common multiples. In [9] it was shown that every least common multiple
of two connected graphs is connected and that every least common multiple of two 2-connected
graphs is 2-connected. But this is not the case for disconnected graphs. For example if we take
H1 = 2K2, H2 = C5, then G1 = 2C5 and G2 which is the graph obtained by identifying two
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vertices in two copies of C5, are in LCM(H1, H2) of which G1 is disconnected while G2 is
connected.

2 Main Result

The cartesian product of two graphs G and H denoted by G � H is a graph with vertex set
V (G)×V (H) for which {(x, u), (y, v)} is an edge if x = y and {u, v} ∈ E(H) or {x, y} ∈ E(G)
and u = v. The graph G � H has |V (G)||V (H)| vertices and |V (G)||E(H)| + |V (H)||E(G)|
edges. In this section graphs that belong to LCM(P4, Cm � Pn), LCM(P4,Wm � Pn) and
LCM(P4,Wm � Cn) are constructed and hence computed the lcm of the respective pairs of
graphs. Let Gt for t = 1, 2, 3 denote the t-th copy of the graph G. Also let vt and et denote a
vertex and an edge in Gt.

2.1 lcm of P4 and Cm � Pn
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Figure 1. Cm � Pn

Let a1, a2, . . . , am and b1, b2, . . . , bn be the vertices of Cm and Pn respectively. Cm × {bj},
1 ≤ j ≤ n are the Cm-fibers and {ai}×Pn, 1 ≤ i ≤ m are the Pn-fibers in Cm � Pn. Label the
vertices and edges of the j-th Cm-fiber, Cm×{bj} as {v1,j , v2,j , . . . , vm,j}, {f1,j , f2,j , . . . , fm,j}
and that of the i-th Pn-fiber, {ai} × Pn as {vi,1, vi,2, . . . , vi,n}, {ei,1, ei,2, . . . , ei,n−1}.

Theorem 2.1. lcm(P4, Cm � Pn) =

{
2mn−m if m ≡ 0 (mod 3) or n ≡ 2 (mod 3)
6mn− 3m otherwise

Proof. Least common multiple of P4 and Cm � Pn is the number of edges in the graph of least
size that is both P4-decomposable and Cm � Pn-decomposable. We consider various cases
for m and n in modulo 3 and will construct in each case a graph of least size that is both P4-
decomposable and Cm � Pn-decomposable.

Case 1: n = 2, m ∈ N, m ≥ 3
The graph G = Cm � P2 has 3m edges. A P4-decomposition of G is given by the following

copies of P4: (fi,1, ei,1, fi,2), 1 ≤ i ≤ m. Thus G is P4-decomposable and hence

lcm(P4, Cm � P2) = 3m.
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Case 2: m = 3, n ∈ N, n ≥ 3
In this case G = C3 � Pn, which has 6n− 3 edges. A P4-decomposition of G is obtained as

follows:

{(f1,j , e2,j , f2,j+1), 1 ≤ j ≤ n− 1}, {(e1,j , f3,j , e3,j−1), 2 ≤ j ≤ n− 1},

(e1,1, f3,1, e3,1), (f1,n, f3,n, e3,n−1)

Thus G is P4-decomposable and hence lcm(P4, C3 � Pn) = 6n− 3.
Case 3: m = 3k, k ≥ 2
Subcase 3.1: n = 3l, l ≥ 1
The graph G = C3k � P3l has 3k(3l − 1) + (3l)(3k) edges and hence |E(G)| ≡ 0 (mod 3).

The 3l − 1 edges of the i-th Pn-fiber of G, where 1 ≤ i ≤ m, together with the edge fi,n of
the n-th Cm-fiber makes a P3l+1, which is P4-decomposable. For 1 ≤ j ≤ n − 1, the j-th Cm-
fiber contains 3k edges and hence it is P4-decomposable. Thus G is P4-decomposable and hence
lcm(P4, C3k � P3l) = 3k(3l − 1) + (3l)(3k).

Subcase 3.2: n = 3l+ 1, l ≥ 1
In this case G = C3k � P3l+1 and |E(G)| = 3k(3l) + (3l + 1)(3k) ≡ 0 (mod 3). Here

each Cm-fiber has 3k edges and each Pn-fiber has 3l edges and hence every Cm-fiber and Pn-
fiber are P4-decomposable. Thus G is P4-decomposable and hence lcm(P4, C3k � P3l+1) =
3k(3l) + (3l+ 1)(3k).

Subcase 3.3: n = 3l+ 2, l ≥ 1
Here G = C3k � P3l+2 and it has 3k(3l+1)+(3l+2)(3k) edges which is a multiple of three.

The j-th Cm-fiber, where 1 ≤ j ≤ n − 2, has 3k edges and hence it is P4-decomposable. The
first 3l edges of the i-th Pn-fiber, where 1 ≤ i ≤ m makes a P3l+1, which is P4-decomposable.
Consider the edges of the (n−1)-th and n-th Cm-fibers and the edges {ei,n−1, 1 ≤ i ≤ m}. Then
{(fi,n−1, ei,n−1, fi,n), 1 ≤ i ≤ m} gives a copy of P4 for each i. Thus G is P4-decomposable
and hence lcm(P4, C3k � P3l+2) = 3k(3l+ 1) + (3l+ 2)(3k).

Case 4: m = 3k + 1, k ≥ 1
Subcase 4.1: n = 3l, l ≥ 1
The graph G = C3k+1 � P3l has (3k+1)(3l−1)+(3l)(3k+1) edges and hence |E(G)| ≡ 2

(mod 3). The first 3k edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 1, makes a P3k+1, which
is P4-decomposable. The 3l − 1 edges of the i-th Pn-fiber, where 2 ≤ i ≤ m − 1, together
with the edge fi−1,n of the n-th Cm-fiber makes a P3l+1, which is P4-decomposable. Now
{(e1,j , fm,j , em,j), 1 ≤ j ≤ n− 1} gives a copy of P4 for each j. The edges {fm−1,n, fm,n} are
left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

1,n with the vertex v2
1,n and the vertex v2

m−1,n
with the vertex v3

m−1,n. The left out edges {f t
m−1,n, f

t
m,n; t = 1, 2, 3} in the three copies of

G will make a P7 in H , which is P4-decomposable. Thus H is P4-decomposable and hence
lcm(P4, C3k+1 � P3l) = 3((3k + 1)(3l − 1) + (3l)(3k + 1)).

Subcase 4.2: n = 3l+ 1, l ≥ 1
In this case G = C3k+1 � P3l+1 which has (3k+ 1)(3l) + (3l+ 1)(3k+ 1) edges and hence

|E(G)| ≡ 1 (mod 3). The first 3k edges of the j-th Cm-fiber, where 1 ≤ j ≤ n, makes a P3k+1,
which is P4-decomposable. For 2 ≤ i ≤ m − 1, the i-th Pn-fiber, has 3l edges and hence it is
P4-decomposable. Now {(e1,j , fm,j , em,j), 1 ≤ j ≤ n − 1} gives a copy of P4 for each j. The
edge fm,n is left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

m,n with the vertex v2
1,n and the vertex v2

m,n

with the vertex v3
1,n. The left out edges {f t

m,n; t = 1, 2, 3} in the three copies of G will make a
P4 in H . Thus H is P4-decomposable and hence lcm(P4, C3k+1 � P3l+1) = 3((3k + 1)(3l) +
(3l+ 1)(3k + 1)).

Subcase 4.3: n = 3l+ 2, l ≥ 1
Here G = C3k+1 � P3l+2 and |E(G)| = (3k+1)(3l+1)+(3l+2)(3k+1), which is a multiple

of three. The first 3k edges of the j-th Cm-fiber, where 1 ≤ j ≤ n− 2, makes a P3k+1, which is
P4-decomposable. The first 3l edges of the i-th Pn-fiber, where 2 ≤ i ≤ m − 1 makes a P3l+1,
which is P4-decomposable. {(e1,j , fm,j , em,j), 1 ≤ j ≤ n − 1} gives a copy of P4 for each j.
Consider the edges of the (n−1)-th and n-th Cm-fibers and the edges {ei,n−1, 1 ≤ i ≤ m}. Then
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{(fi,n−1, ei,n−1, fi,n), 1 ≤ i ≤ m} gives a copy of P4 for each i. Thus G is P4-decomposable
and hence lcm(P4, C3k+1 � P3l+2) = (3k + 1)(3l+ 1) + (3l+ 2)(3k + 1).

Case 5: m = 3k + 2, k ≥ 1
Subcase 5.1: n = 3l, l ≥ 1
For the graph G = C3k+2 � P3l, |E(G)| = (3k + 2)(3l − 1) + (3l)(3k + 2) ≡ 1 (mod 3).

The 3k + 2 edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 1, together with the edge em,j of
the m-th Pn-fiber, makes 3k + 3 edges, which is P4-decomposable. The 3l − 1 edges of the i-th
Pn-fiber, where 1 ≤ i ≤ m− 1, together with the edge fi,n of the n-th Cm-fiber makes a P3l+1,
which is P4-decomposable. The edge fm,n is left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

m,n with the vertex v2
1,n and the vertex v2

m,n

with the vertex v3
1,n. The left out edges {f t

m,n; t = 1, 2, 3} in the three copies of G will make a
P4 in H . Thus H is P4-decomposable and hence lcm(P4, C3k+2 � P3l) = 3((3k + 2)(3l − 1) +
(3l)(3k + 2)).

Subcase 5.2: n = 3l+ 1, l ≥ 1
In this case G = C3k+2 � P3l+1 which has (3k+ 2)(3l) + (3l+ 1)(3k+ 2) edges and hence

|E(G)| ≡ 2 (mod 3). The 3k + 2 edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 1, together
with the edge em,j of the m-th Pn-fiber, makes 3k + 3 edges, which is P4-decomposable. For
1 ≤ i ≤ m−1, the i-th Pn-fiber, has 3l edges and hence it is P4-decomposable. The first 3k edges
of the n-th Cm-fiber makes a P3k+1, which is P4-decomposable. The edges {fm−1,n, fm,n} are
left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

1,n with the vertex v2
1,n and the vertex v2

m−1,n
with the vertex v3

m−1,n. The left out edges {f t
m−1,n, f

t
m,n; t = 1, 2, 3} in the three copies of

G will make a P7 in H , which is P4-decomposable. Thus H is P4-decomposable and hence
lcm(P4, C3k+2 � P3l+1) = 3((3k + 2)(3l) + (3l+ 1)(3k + 2)).

Subcase 5.3: n = 3l+ 2, l ≥ 1
The graph G = C3k+1 � P3l+2 has (3k + 2)(3l + 1) + (3l + 2)(3k + 2) edges, which is a

multiple of three. The 3k + 2 edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 2, together with
the edge em,j of the m-th Pn-fiber, makes 3k + 3 edges, which is P4-decomposable. The first
3l edges of the i-th Pn-fiber, where 1 ≤ i ≤ m − 1 makes a P3l+1, which is P4-decomposable.
Consider the edges of the (n−1)-th and n-th Cm-fibers and the edges {ei,n−1, 1 ≤ i ≤ m}. Then
{(fi,n−1, ei,n−1, fi,n), 1 ≤ i ≤ m} gives a copy of P4 for each i. Thus G is P4-decomposable
and hence lcm(P4, C3k+2 � P3l+2) = (3k + 2)(3l+ 1) + (3l+ 2)(3k + 2).

Theorem 2.2. Cm � Pn is P4-decomposable if and only if m ≡ 0 (mod 3) or n ≡ 2 (mod 3).

2.2 lcm of P4 and Wm � Pn

Let Wm denote the wheel graph of order m, which contains a cycle Cm−1 and a vertex called
hub, which is adjacent to every vertex of Cm−1. |E(Wm)| = 2m − 2. Let a1, a2, . . . , am and
b1, b2, . . . , bn be the vertices of Wm and Pn respectively, where am is the hub vertex of Wm.
Wm × {bj}, 1 ≤ j ≤ n are the Wm-fibers and {ai} × Pn, 1 ≤ i ≤ m are the Pn-fibers in
Wm � Pn. Label the vertices and edges of the j-th Wm-fiber, Wm×{bj} as {v1,j , v2,j , . . . , vm,j},
{f1,j , f2,j , . . . , fm−1,j , g1,j , g2,j , . . . , gm−1,j} where {f1,j , f2,j , . . . , fm−1,j} are the edges of the
cycle in the j-th Wm-fiber and {g1,j , g2,j , . . . , gm−1,j} are the edges connecting the hub and the
vertices of the cycle in the j-th Wm-fiber. The vertices and edges of the i-th Pn-fiber, {ai} × Pn

are labelled as {vi,1, vi,2, . . . , vi,n} and {ei,1, ei,2, . . . , ei,n−1} respectively.
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Figure 2. Wm � Pn

Theorem 2.3. lcm(P4,Wm � Pn) =

{
3mn− 2n−m if 2m+ n ≡ 0 (mod 3)
3(3mn− 2n−m) otherwise

Proof. Let P
′

be the path v1,1f1,1v2,1f2,1 . . . fm−2,1vm−1,1gm−1,1vm,1, which is contained in
the first Wm-fiber, P

′′
: vm,1em,1vm,2em,2 . . . vm,n−1em,n−1vm,n, the m-th Pn-fiber and P

′′′
:

vm,ngm−1,nvm−1,nfm−2,n . . . v2,nf1,nv1,n, the path contained in the last Wm-fiber.
Let G = Wm � Pn. Then |E(G)| = m(n− 1) + n(2m− 2) = 3mn− 2n−m. Consider the

edges of G∗ = (Wm � Pn)\{P
′
, P

′′
, P

′′′}. Copies of P4 are obtained as follows :
For a fixed j, 1 ≤ j ≤ n− 2, {(gi,j , ei,j , fi,j+1), 1 ≤ i ≤ m− 2}, {(fm−1,j , em−1,j , gm−1,j+1)},

{(gi,n−1, ei,n−1, gi,n), 1 ≤ i ≤ m− 2}, (fm−1,n−1, em−1,n−1, fm−1,n).

Thus G∗ is P4-decomposable. The paths P
′
, P

′′
and P

′′′
makes the path P ∗ of length 2m+n−3

in Wm � Pn. Thus Wm � Pn is P4-decomposable if P ∗ is P4-decomposable and this happens if
2m+ n ≡ 0 (mod 3).

If 2m+ n ≡ 1 or 2 (mod 3), take three copies of G namely G1, G2, G3 and in each copy of
G, the subgraph G∗ has the above decomposition. Let H be the graph obtained by identifying the
vertex v1

1,1 with the vertex v2
1,n and the vertex v2

1,1 with the vertex v3
1,1. Then the path P ∗ in the

three copies of G will make a path of length 3(2m+n−3) in H , which is P4-decomposable and
so is H . Thus lcm(P4,Wm � Pn) = |E(Wm � Pn)| if 2m+n ≡ 0 (mod 3) and 3|E(Wm � Pn)|
otherwise.

Theorem 2.4. Wm � Pn is P4-decomposable if and only if 2m+ n ≡ 0 (mod 3).

2.3 lcm of P4 and Wm � Cn

Let a1, a2, . . . , am and b1, b2, . . . , bn be the vertices of Wm and Cn respectively, where am is the
hub vertex of Wm. Wm × {bj}, 1 ≤ j ≤ n are the Wm-fibers and {ai} × Cn, 1 ≤ i ≤ m are the
Cn-fibers in Wm � Cn. Label the vertices and edges of the j-th Wm-fiber, Wm × {bj} as in the



18 Reji T, Ruby R and Sneha B

above case of Wm � Pn. The vertices and edges of the i-th Cn-fiber, {ai} × Cn are labelled as
{vi,1, vi,2, . . . , vi,n}, {ei,1, ei,2, . . . , ei,n}.

f1,n f2,n fm−2,n

fm−1,n

gm−1,n

g1,n g2,n

f1,1 f2,1 fm−2,1fm−1,1
gm−1,1
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e 1
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e 1
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e m
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e m
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−
1

e 1
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e m
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e 1
,1

e m
,1

Figure 3. Wm � Cn

Theorem 2.5. lcm(P4,Wm � Cn) =

{
3mn− 2n if n ≡ 0 (mod 3)
3(3mn− 2n) otherwise

Proof. Let G = Wm � Cn. Then |E(G)| = mn + n(2m − 2) = 3mn − 2n. Copies of P4 are
obtained as follows :
For a fixed j, 2 ≤ j ≤ n− 2, {(gi,j , ei,j , fi,j+1), 1 ≤ i ≤ m− 2}, {(fm−1,j , em−1,j , gm−1,j+1)},

{(gi,1, ei,n, fi,n), (fi,1, ei,1, fi,2), (gi,n−1, ei,n−1, gi,n); 1 ≤ i ≤ m− 2},

(fm−1,1, em−1,1, gm−1,2), (fm−1,n−1, em−1,n−1, fm−1,n), (em−1,n, gm−1,1, em,n)

The path P ∗ of length n consisting of the edges {em,1, em,2, . . . , em,n−1, gm−1,n} is left out. Thus
Wm � Cn is P4-decomposable if P ∗ is P4-decomposable and this happens if n ≡ 0 (mod 3).

If n ≡ 1 or 2 (mod 3), take three copies of G namely G1, G2, G3 having the above decom-
position. Let H be the graph obtained by identifying the vertex v1

m,1 with the vertex v2
m,1 and

the vertex v2
m−1,n with the vertex v3

m−1,n. Then the path P ∗ in the three copies of G will make
a path of length 3n in H , which is P4-decomposable and so is H . Thus lcm(P4,Wm � Cn) =
|E(Wm � Cn)| if n ≡ 0 (mod 3) and 3|E(Wm � Cn)| otherwise.

Theorem 2.6. Wm � Cn is P4-decomposable if and only if n ≡ 0 (mod 3).
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